


environment by 🗯 JANIS

# Run a LHe cryostat without the LHe

Convert your liquid helium cryostat with an RGC for cryogen-free operation



## **RGC** helium recirculation

### The problem

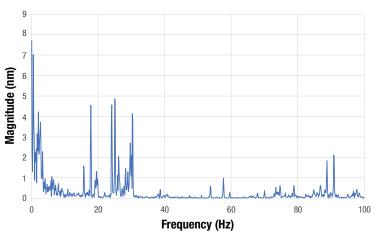
You want the benefits of a LHe cryostat, but LHe is expensive and difficult to continuously source.

### The solution

The RGC brings together the best of both worlds; the low temperatures, sample throughput, and low vibration of LHe cryostats, without the additional cost of LHe.

### How it works

The RGC runs helium in a closed loop, making a continuousflow cryostat cryogen-free. Helium gas is cooled and liquefied by the RGC's cryocooler, and travels to the cryostat through a flexible vacuum-insulated transfer line. LHe cools the sample. The RGC captures the evaporated gas through the transfer line and reliquefies it, continuously recirculating the helium.




| Comparison                         |              | Closed-cycle cryostat                          |              | LHe cryostat                                                                |              | LHe cryostat + RGC                                                 |  |  |
|------------------------------------|--------------|------------------------------------------------|--------------|-----------------------------------------------------------------------------|--------------|--------------------------------------------------------------------|--|--|
| Cryogen consumption                | $\checkmark$ | Cryogen-free                                   | x            | Liquid helium                                                               | $\checkmark$ | Cryogen-free                                                       |  |  |
| Lifetime cost                      | $\checkmark$ | \$                                             | x            | \$\$\$                                                                      | $\checkmark$ | \$                                                                 |  |  |
| Cooling power                      | ×            | Lower cooling power                            | $\checkmark$ | Higher cooling power                                                        | $\checkmark$ | Higher cooling power                                               |  |  |
| Low vibration                      | x            | Higher vibrations; cold head is part of system | ~            | Low vibration; no cold head                                                 | $\checkmark$ | Low vibration; cold head is decoupled from system                  |  |  |
| Cold head warmup for sample change | x            | Warmup required                                |              | N/A                                                                         | $\checkmark$ | No warmup required between sample changes                          |  |  |
| Test environment footprint         | ×            | Larger footprint in test<br>environment        | ~            | Small and flexible to different mounting configurations in test environment | ~            | Maintain small LHe<br>cryostat; RGC is next to test<br>environment |  |  |

### Ideal for low vibration

Commonly paired with a Lake Shore ST-500 cryostat, the combination is an ultra-stable cryogenic microscopy platform.

#### Vibration measured on a standard ST-500 cryostat cooled by an RGC system



| Sample temperatures | ST-100 and ST-300 | ST-400                 | ST-500                 | STVP  | Probe station         |
|---------------------|-------------------|------------------------|------------------------|-------|-----------------------|
| RGC4-10             | <4.3 K            | <4.0 K (120 mW at 5 K) | <4.2 K (100 mW at 5 K) | <10 K | Consult<br>Lake Shore |

The RGC is compatible with Lake Shore ST and STVP cryostats, and can be used with some LHe cryostats from other vendors.