346 Cryogenic Temperature Controller

Lake Shore

Next-generation temperature controller

400 W of control power with measurements down to 300 mK

The Model 346 cryogenic temperature controller is designed for rapid and precise temperature management, featuring four 100 W heater outputs that deliver a total of 400 W of power—allowing the system to warm up twice as fast. It also includes four low-power 1 W heater outputs. With 10 standard inputs expandable up to 26 with option cards, the controller measures temperatures ranging from 300 mK to 1500 K.

Enhanced system control is achieved through two digital inputs for external triggering and two relays. The touchscreen interface ensures simple setup and monitoring, while the included ColdSync[™] software facilitates advanced setup, initial configuration, and comprehensive data monitoring.

Use the 346 temperature controller with Lake Shore cryogenic temperature sensors

400 W heater power	Measure 300 mK to 1500 K	System control		
System warm-up twice as fast	RTD/diode/thermocouple	USB, Ethernet, GPIB (optional)		
Four 100 W heater outputs	Includes 10 inputs	Two relays for process control		
Four 1 W heater outputs	Up to 26 inputs with option cards	Two digital inputs for external triggering		

2

The front panel

The front panel of the Model 346 features a user-friendly touchscreen interface designed for basic control and monitoring. It allows easy toggling between different display modes, including:

Control Loops

View paired input and output for each control loop

Inputs Monitor all input channels

Outputs Configure all output channels

Settings Configure various instrument settings

Additionally, the front panel provides real-time error notifications, such as broken leads, allowing for prompt troubleshooting. Custom naming of inputs is also supported to help organize the setup. For advanced functionalities, the accompanying ColdSync software offers comprehensive tools for loading curves, data collection, setting up zones, and more complex configurations.

The back panel

(٢ **L**1 Control loop 1 L2 Inputs Outputs A Input A Statistics Ð L3 499.126 K 499.110 K L4 92.4581 mV 499.126 K 2.5 V (¢3) L5 Setpoint Output 1 L6 0.087 W 8.66% 500.000 K L7 Mode Range Closed 50.000 20.000 0.000 0.00% Low L8

346 temperature controller showing control loops

346 temperature controller showing sensor data

Measurement inputs

A. Two high-speed measurement inputs — 100 ms update rate

Heaters

E. Four high-power 100 W heaters

F. Four analog outputs / 1 W heaters

- B. Eight standard measurement inputs 400 ms update rate
- C. Four option card slots to expand inputs RTD/diode option card adds 4 inputs Thermocouple option card

Communication

- D. GPIB option card slot
- I. USB
- J. Ethernet

System control

G. Two digital I/O, two relays

ColdSync[™] software

ColdSync software, included with the measurement instrument, is designed to streamline the process of setting up new sensors and collecting data. Key features include:

Chart Recorder

Stream data live and easily save recordings

Data Editing Directly edit the data collected

Curve Handler

Load unique sensor curves into the instrument

Instrument Configuration

Set, modify, and import/export instrument settings

Command Sending

Test remote communications by sending and receiving text commands

ColdSync software

Option cards

The Model 346 features four option card slots for sensor inputs, along with an additional slot for GPIB communication. Adding an option card does not occupy any existing inputs.

RTD/diode option card

Each option card increases the number of inputs by four. With four option card slots and 10 existing inputs, the total can be expanded to up to 26 inputs.

Thermocouple option card

Add two thermocouple measurement inputs for temperature readings up to 1500 K.

GPIB option card

Add GPIB communication via a dedicated option card slot, separate from the four slots designated for sensor inputs.

Specifications

Model 346 input specifications

	Sensor temperature coefficient	Electronic control stability ¹	Excitation current	Measurement temperature coefficient	Input range	Display resolution	Measurement resolution	Electronic accuracy ⁶
Diode	— Negative	±20 μV	10 µA ±0.05% ^{2,3}	(10 μV + 0.0005% of rdg)/°C	0 V to 2.5 V	10 µV	10 µV	±80 μV ±0.005% of rdg
PTC RTD	+ Positive	0.4 mΩ	1 mA4	(0.01 mΩ + 0.001% of rdg)/°C	0 Ω to 10 Ω	0.1 mΩ	0.2 mΩ	$\pm 0.002~\Omega$ $\pm 0.01\%$ of rdg
		4 mΩ	1 mA4	(0.1 mΩ + 0.001% of rdg)/°C	0 Ω to 100 Ω	1 mΩ	2 mΩ	$\pm 0.004~\Omega$ $\pm 0.01\%$ of rdg
		40 mΩ	1 mA4	(1 mΩ + 0.001% of rdg)/°C	0 Ω to 1 $k\Omega$	10 mΩ	20 mΩ	$\pm 0.04~\Omega$ $\pm 0.02\%$ of rdg
NTC RTD 10 mV	— Negative	±3 mΩ	100 µA4	(0.1 mΩ + 0.001% of rdg)/°C	0 Ω to 100 Ω	1 mΩ	1.5 mΩ	$\pm 0.01 \ \Omega$ $\pm 0.04\%$ of rdg
		±9 mΩ	30 µA4	(0.3 mΩ + 0.0015% of rdg)/°C	0 Ω to 300 Ω	1 mΩ	4.5 mΩ	$\pm 0.01 \ \Omega$ $\pm 0.04\%$ of rdg
		±30 mΩ ±0.004% of rdg	10 µA4	(1 mΩ + 0.001% of rdg)/°C	0 Ω to 1 kΩ	10 mΩ	15 mΩ + 0.002% of rdg	$\pm 0.1 \ \Omega$ $\pm 0.04\%$ of rdg
		±90 mΩ ±0.004% of rdg	3 µA4	(3 mΩ + 0.0015% of rdg)/°C	0 Ω to 3 kΩ	10 mΩ	45 mΩ + 0.002% of rdg	$\pm 0.1 \ \Omega$ $\pm 0.04\%$ of rdg
		$\pm 300 \text{ m}\Omega \\ \pm 0.004\% \\ \text{of rdg}$	1 µA4	(10 mΩ + 0.001% of rdg)/°C	0 Ω to 10 kΩ	100 mΩ	150 mΩ + 0.002% of rdg	$\pm 1.0 \ \Omega$ $\pm 0.04\%$ of rdg
		±900 mΩ ±0.004% of rdg	300 nA4	(30 mΩ + 0.001% of rdg)/°C	0 Ω to 30 k Ω	100 mΩ	450 mΩ + 0.002% of rdg	$\pm 2.0 \ \Omega$ $\pm 0.04\%$ of rdg
		$\pm 3 \Omega$ $\pm 0.01\%$ of rdg	100 nA⁴	(100 mΩ + 0.002% of rdg)/°C	0 Ω to 100 kΩ	1 Ω	1.5 Ω + 0.002% of rdg	$\pm 10.0~\Omega$ $\pm 0.04\%$ of rdg
Thermocouple (Optional)	+ Positive	±0.8 µV	NA	(0.1 µV + 0.001% of rdg)/°C	±50 mV	0.1 µV	0.4 µV	$\pm 1~\mu V$ $\pm 0.05\%~of~rdg^{\rm 5}$

¹ Control stability of the electronics only, in ideal thermal system

² Current source error has negligible effect on measurement accuracy

³ Diode input excitation can be set to 1 mA

⁴ Current source error is removed during calibration

⁵ Accuracy specification does not include errors from room temperature compensation

⁶ Accuracy at T_{cal} , typically 23.5 °C ±1.5 °C; with current reversal enabled for RTD measurements

Specifications

Sensor input configuration

	RTD/diode	Thermocouple		
Measurement type	4-lead differential	2-lead differential, room temperature compensated		
Excitation	Constant current with current reversal for RTDs	NA		
Supported sensors	Diodes: Silicon	Most thermocounie types		
	RTDs: 100 Ω platinum, Cernox®, and Rox $^{\rm m}$	most mornocoupie types		
Standard curves	DT-670, PT-100, RX-102A, RX-202A, RX-103A	Туре Е, Туре К		
Input connector	Normal density, socketed DE-9 D-subminiature (2 inputs per connector) Screw terminals in a ceramic isotherm			

Input details

Number of inputs 10 (up to 26 with RTD/diode option card)

Isolation Sensor inputs electrically isolated from other circuits but not each other

A/D resolution 24-bit

Maximum update rate 2 primary inputs: 100 ms update rate 0ther inputs: 400 ms update rate

Automatically selects appropriate NTC RTD or PTC RTD range

Math Maximum and minimum

Filter Averages 2 to 64 input readings

Additional features 4-lead break detection with 2-lead failover mode

Control specifications

Control outputs 8 control outputs

Control type Closed loop PID with manual heater output, open loop, warm-up mode, or mirroring

Update rate 10/s

Control stability Sensor dependent, see input specifications table

Manual output 0 to 100% with 0.01% setting resolution

Zone control 10 temperature zones with P, I, D, manual out, range, control channel, ramp rate

Warm-up heater mode

Warm-up percentage 0 to 100% with 1% resolution

Warm-up mode Continuous control or auto-off

High-power heater outputs

Output Outputs 1, 2, 3, 4

Output type Variable DC unipolar current source

Heater load rage 10Ω to 100Ω

Ranges 2 (decade steps in power)

Heater noise 0.12 µA RMS

Grounding Output referenced to chassis ground **Connector**

Normal density, socketed DA-15, D-subminiature

Safety limits Curve temperature, power up heater

off, short and open circuit protection **Maximum power** 100 W with 25 Ω load, 50 W with 50 Ω load

Maximum current 2 A with 25 Ω load, 1 A with 50 Ω load

Voltage compliance 50 V with 25 Ω load, 50 V with 50 Ω load

Heater load for maximum power 25 $\Omega,\,50~\Omega$

Low-power analog outputs

Output Outputs 5, 6, 7, 8

Output type Variable DC unipolar voltage source

Additional control type Monitor output

Monitor output settings Scale

User selected

Data source Temperature or sensor units

Settings Input, source, top of scale, bottom of scale, or manual

Range 0 V to +10 V

Maximum current 100 mA

Maximum power 1 W (into 100Ω)

Resolution 0.3 mV

Accuracy ±2.5 mV

Noise 0.3 mV RMS

Minimum load resistance 100 Ω (short-circuit protected)

Connector 10-pin 2.5 mm detachable terminal block

Specifications

General specifications

Ambient temperature 15 °C to 35 °C at rated accuracy; 5 °C to 40 °C at reduced accuracy

Power requirement 100 V to 240 V (universal input), 50 to 60 Hz, 500 + VA

Size

435 mm W \times 89 mm H \times 368 mm D $(17 \text{ in} \times 3.5 \text{ in} \times 14.5 \text{ in})$, full rack

Weight 6.1 kg (13.5 lb)

Approvals CE, NRTL

Interface

USB host

Function Firmware updates, flash drive support

Type USB 3.0, mass storage class (MSC) device

Connector USB Type-C[™]

USB device

Function Emulates a standard RS-232 serial port

Type **USB 2.0**

Baud rate 921,600

Connector B-type USB connector

Ethernet

Function TCP/IP command and control

IPv6 compatibility Yes

Speed 1 Gb/s

Connector RJ-45

IEEE-488.2 (with option card)

Compatibilities SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT0, C0, E1

Reading rate To 10 rdg/s on each input

Software support ColdSync[™], MeasureLINK[™], LabVIEW[™], Python

Alarms

Data source Temperature or sensor units

Actuators Display annunciator, beeper, and relays

Relays

Number

2

Contacts Normally open (NO), normally closed (NC) and common (C)

Contact rating 30 VDC at 3 A

Operation Activate relays on high, low, or both alarms for any input, or manual mode

Connector 10-pin 2.5 mm detachable terminal block

Digital inputs

Number of inputs 2

Isolation Optical Maximum low-level input voltage +1 V Minimum high-level input voltage

+4 V

Safe input voltage range -5 V to +35 V

Option cards

Option slots

Supported option cards Thermocouple, RTD/diode

Front panel

Display 5 in capacitive touch, color TFT-LCD WVGA (800 × 480) with LED backlight

Power switch SPST mains/line power switch

Display units K, °C, V, mV, Ω

Reading source Temperature, sensor units, maximum, and minimum

Next-generation Cryogenic Temperature Controller

Let's talk about your application

Ordering information

Tel: +1 614 891 2244 Email: sales@lakeshore.com Website: www.lakeshore.com

Copyright © Lake Shore Cryotronics, Inc. All rights reserved. Specifications are subject to change. 031725

